Abstract

Phototherapy has emerged as a novel therapeutic modality for cancer treatment, but its low therapeutic efficacy severely hinders further extensive clinical translation and application. This study reports amplifying the phototherapeutic efficacy by constructing a near‐infrared (NIR)‐responsive multifunctional nanoplatform for synergistic cancer phototherapy by a single NIR irradiation, which can concurrently achieve mitochondria‐targeting phototherapy, synergistic photothermal therapy (PTT)/photodynamic therapy (PDT), self‐sufficient oxygen‐augmented PDT, and multiple‐imaging guidance/monitoring. Perfluorooctyl bromide based nanoliposomes are constructed for oxygen delivery into tumors, performing the functions of red blood cells (RBCs) for oxygen delivery (“Nano‐RBC” nanosystem), which can alleviate the tumor hypoxia and enhance the PDT efficacy. The mitochondria‐targeting performance for enhanced and synergistic PDT/PTT is demonstrated as assisted by nanoliposomes. In particular, these “Nano‐RBCs” can also act as the contrast agents for concurrent computed tomography, photoacoustic, and fluorescence multiple imaging, providing the potential imaging capability for phototherapeutic guidance and monitoring. This provides a novel strategy to achieve high therapeutic efficacy of phototherapy by the rational design of multifunctional nanoplatforms with the unique performances of mitochondria targeting, synergistic PDT/PTT by a single NIR irradiation (808 nm), self‐sufficient oxygen‐augmented PDT, and multiple‐imaging guidance/monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.