Abstract

Nano-sized inverted domain dots in ferroelectric materials is a technology with potential applications in ultrahigh-density rewritable data storage systems. Up to now, we have studied domain inversion characteristics of stoichiometric and congruent LiTaO 3 single crystals in nanoscopic area using scanning nonlinear dielectric microscopy (SNDM), which is the technique for observing ferroelectric polarization distribution with sub-nanometer resolution. In this study, we have revealed nano-sized inverted domain remained stably for a long time, and successfully formed inverted domain dots at a data density of 1.50 Tbit/inch 2, representing the highest memory density for rewritable electric data storage reported to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.