Abstract
Geometric algebra is a powerful mathematical framework that allows us to use geometric entities (encoded by blades) and orthogonal transformations (encoded by versors) as primitives and operate on them directly. In this work, we present a high-level C++ library for geometric algebra. By manipulating blades and versors decomposed as vectors under a tensor structure, our library achieves high performance even in high-dimensional spaces ($$\bigwedge \mathbb {R}^{n}$$ with $$n > 256$$) assuming (p, q, r) metric signatures with $$r = 0$$. Additionally, to keep the simplicity of use of our library, the implementation is ready to be used both as a C++ pure library and as a back-end to a Python environment. Such flexibility allows easy manipulation accordingly to the user’s experience, without impact on the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.