Abstract

Given a quadratic form on a vector space, the geometric algebra of the corresponding pseudo-euclidean space is defined in terms of a simple set of rules which characterizes the geometric product of vectors. We develop geometric algebra in such a way that it augments, but remains fully compatible with, the more traditional tools of matrix algebra. Indeed, matrix multiplication arises naturally from the geometric multiplication of vectors by introducing a spectral basis of mutually annihiliating idempotents in the geometric algebra. With the help of a few more algebraic identities, and given the proper geometric interpretation, the geometric algebra can be applied to the study of affine, projective, conformal and other geometries. The advantage of geometric algebra is that it provides a single algebraic framework with a comprehensive, but flexible, geometric interpretation. For example, the affine plane of rays is obtained from the euclidean plane of points by adding a single anti-commuting vector to the underlying vector space. The key to the study of noneuclidean geometries is the definition of the operations of meet and join, in terms of which incidence relationships are expressed. The horosphere provides a homogeneous model of euclidean space, and is obtained by adding a second anti-commuting vector to the underlying vector space of the affine plane. Linear orthogonal transformations on the higher dimensional vector space correspond to conformal or Mobius transformations on the horosphere. The horosphere was first constructed by F.A. Wachter (1792–1817), but has only recently attracted attention byo ering a host of new computational tools in projective and hyperbolic geometries when formulated in terms of geometric algebra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call