Abstract
We study the spectrum of the scaling Lee-Yang model on a finite interval from two points of view: via a generalisation of the truncated conformal space approach to systems with boundaries, and via the boundary thermodynamic Bethe ansatz. This allows reflection factors to be matched with specific boundary conditions, and leads us to propose a new (and non-minimal) family of reflection factors to describe the one relevant boundary perturbation in the model. The equations proposed previously for the ground state on an interval must be revised in certain regimes, and we find the necessary modifications by analytic continuation. We also propose new equations to describe excited states, and check all equations against boundary truncated conformal space data. Access to the finite-size spectrum enables us to observe boundary flows when the bulk remains massless, and the formation of boundary bound states when the bulk is massive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.