Abstract

Summary1. Ecological stoichiometry has been used to better understand dynamics in consumer growth and the role of consumer‐recycled nutrients because it focuses on more than one element. Most research has focused on pelagic rather than benthic consumers. Variation in elemental composition among benthic consumer taxa would suggest that taxa differ in their susceptibility to nutrient limitation or in their role in recycling nutrients.2. We collected benthic macroinvertebrates from streams in two regions (Indiana–Michigan and Wisconsin, U.S.A.) to examine taxonomic and regional variation in benthic macroinvertebrate body carbon (C), nitrogen (N), and phosphorus (P) concentrations and ratios.3. Elemental composition varied little within taxa common to both regions. In contrast, elemental composition differed greatly among taxa and appeared to be related to phylogeny. The elemental composition of macroinvertebrates clustered into three distinct groups: insects, mollusks, and crustaceans. To a lesser extent, insects and mollusks also differed in elemental composition among genera.4. Functional feeding groups (FFGs) differed in elemental composition, with predators having a higher N content than other groups. Substantial elemental imbalances between C and N were found between most primary consumers and their likely food sources, and the magnitude of the imbalance depended in part on the FFG.5. Our results support an assumption of most ecological stoichiometry models that, within a species, the elemental composition of aquatic invertebrates is relatively constant. Variation in elemental composition among taxa at various higher taxonomic levels suggests that susceptibility of stream invertebrates to nutrient limitation and their role in nutrient cycling will strongly depend on phylogeny.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call