Abstract

The microtubule (MT)-stabilizing drug, taxol, inhibited human cytomegalovirus (CMV)-initiated cell DNA synthesis by up to 100% in serum-arrested mouse embryo (ME) fibroblasts that were abortively infected by CMV. Taxol concentrations known to increase MT polymerization and to stabilize existing MTs (10 to 20 μg/ml) blocked CMV-stimulated cell DNA synthesis, while taxol concentrations of 2.5 μg/ml, or less, did not. Taxol maximally inhibited CMV initiation of cell DNA synthesis when added 3 h after virus infection and inhibited this initiation by greater than 50% when added up to 12 h after CMV infection. Control experiments suggest that taxol specifically inhibited CMV-stimulated cell DNA synthesis. Pretreatment of CMV stock with taxol did not reduce the stimulatory effect of CMV on cell DNA synthesis and taxol had no detectable effect on CMV-specific early protein synthesis. Moreover, taxol did not appear to alter thymidine pool sizes, affect cell viability, or compromise the DNA synthetic machinery in CMV-infected cells. Since taxol increases tubulin polymerization and inhibits MT disassembly, these results suggest that dynamic changes in MTs or in the pool of free tubulin subunits are necessary for CMV to stimulate cell entry into a proliferative cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call