Abstract

The rate of virus and cell DNA synthesis was studied in human embryonic lung cells pre-treated with 5-iodo-2'-deoxyuridine (IdUrd) and exposed to cytomegalovirus (CMV) or medium. Analysis of DNA in CMV-infected cells following sequential 4 h pulses with 3H-thymidine indicated that a temporal relationship existed in the pattern of virus and cell DNA synthesis. The pattern of DNA replication in infected cells resembled that of a typical cell cycle, whereas the rate of cell DNA synthesis in uninfected cells remained low throughout the study. Increased rates of cell and virus DNA synthesis began concomitantly at 16 h post-infection and reached a maximum at 36 h post-infection. The rate of DNA synthesis then declined and remained at lower levels until 48 h post-infection. This was subsequently followed by a second increase in the rate of cell and virus DNA synthesis. The rates of cell and virus DNA replication were similar throughout the study in that increased and decreased rates of synthesis occurred simultaneously. It was of interest to note that CMV induced cell DNA replication in IDUrd arrested cells; in contrast, addition of fresh serum did not induce a similar increase in the rate of DNA synthesis in IdUrd arrested, but uninfected, cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.