Abstract
The reaction of O-trimethylsilyl-1,1-dimethyl-2-trifluoroacetylhydrazine (1a) with chloromethyl(methyl)dichlorosilane affords an unexpected equilibrium mixture, 10a right arrow over left arrow 11a, between a neutral hexacoordinate silicon chelate with a covalent chloro ligand (10a) and an ionic pentacoordinate silicon complex (11a). The equilibrium reaction consists formally of a migration of the covalent chloro ligand from silicon to an adjacent ammonium nitrogen, as a chloride anion, and thus constitutes a novel type of tautomeric reaction. Crystallographic and NMR data provide evidence for the reaction. Temperature, solvent, substituent, and counterion effects on the tautomeric equilibrium are discussed: when the temperature of the mixture is raised, the equilibrium ratio 10a/11a increases. Formation of the mixture in toluene, a nonionizing solvent, shifts the equilibrium completely toward the neutral 10a. When the initial hydrazide has a phenyl (11c) or a hydrogen (11b) group as substituent, rather than CF3, the equilibrium is shifted to the ionic side. Replacement of the chloride counterion by triflate, using trimethylsilyl triflate, shifts the 10a/11a mixture to the ionic side. Low-temperature NMR monitoring of the stepwise formation of 10/11 was carried out and provided insight into the reaction mechanism. In an attempt to grow crystals of 11c, the pentacoordinate tautomer analogue, an unprecedented chloride-bridged disiloxane complex, with two pentacoordinate silicons sharing a common axial chloro ligand, crystallized and was characterized and described.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have