Abstract
Geiges and Gonzalo (Invent. Math. 121:147–209 1995, J. Differ. Geom. 46:236–286 1997, Acta. Math. Vietnam 38:145–164 2013) introduced and studied the notion of taut contact circle on a three-manifold. In this paper, we introduce a Riemannian approach to the study of taut contact circles on three-manifolds. We characterize the existence of a taut contact metric circle and of a bi-contact metric structure. Then, we give a complete classification of simply connected three-manifolds which admit a bi-H-contact metric structure. In particular, a simply connected three-manifold admits a homogeneous bi-contact metric structure if and only if it is diffeomorphic to one of the following Lie groups: SU(2), \({\widetilde{SL}}(2,{\mathbb {R}})\), \({\widetilde{E}}(2)\), E(1, 1). Moreover, we obtain a classification of three-manifolds which admit a Cartan structure \((\eta _1,\eta _2)\) with the so-called Webster function \({\mathcal {W}}\) constant along the flow of \(\xi _1\) (equivalently \(\xi _2\)). Finally, we study the metric cone, i.e., the symplectization, of a bi-contact metric three-manifold. In particular, the notion of bi-contact metric structure is related to the notions of conformal symplectic couple (in the sense of Geiges (Duke Math. J. 85:701–711 1996)) and symplectic pair (in the sense of Bande and Kotschick (Trans. Am. Math. Soc. 358(4):1643–1655 2005)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.