Abstract
Hungry animals consistently show a desire to obtain food. Even a brief sensory detection of food can trigger bursts of physiological and behavioral changes. However, the underlying mechanisms by which the sensation of food triggers the acute behavioral response remain elusive. We have previously shown in Drosophila that hunger drives a preference for low temperature. Because Drosophila is a small ectotherm, a preference for low temperature implies a low body temperature and a low metabolic rate. Here, we show that taste-sensing triggers a switch from a low to a high temperature preference in hungry flies. We show that taste stimulation by artificial sweeteners or optogenetics triggers an acute warm preference, but is not sufficient to reach the fed state. Instead, nutrient intake is required to reach the fed state. The data suggest that starvation recovery is controlled by two components: taste-evoked and nutrient-induced warm preferences, and that taste and nutrient quality play distinct roles in starvation recovery. Animals are motivated to eat based on time of day or hunger. We found that clock genes and hunger signals profoundly control the taste-evoked warm preferences. Thus, our data suggest that the taste-evoked response is one of the critical layers of regulatory mechanisms representing internal energy homeostasis and metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.