Abstract
1. Activities of 35 taste-responsive neurons in the cortical gustatory area were recorded with chronically implanted fine wires in freely ingesting Wistar rats. Quantitative analyses were performed on responses to distilled water, food solution, and four taste stimuli: sucrose, NaCl, HCl, and quinine hydrochloride. 2. Taste-responsive neurons were classified into type-1 and type-2 groups according to the response patterns to licking of the six taste stimuli. Type-1 neurons (n = 29) responded in excitatory or inhibitory directions to one or more of the taste stimuli. Type-2 neurons (n = 6) showed responses in different directions depending upon palatability of the liquids to rats: neurons showing excitatory (or inhibitory) responses to palatable stimuli exhibited inhibitory (or excitatory) responses to unpalatable stimuli. 3. Correlation coefficients of responses to pairs of stimuli across neurons suggested that palatable stimuli (water, food solution, sucrose, and NaCl) and unpalatable stimuli (HCl and quinine) elicited reciprocal (excitatory vs. inhibitory) responses in type-2 neurons, whereas type-1 neurons showed positively correlated responses to specific combinations of stimuli such as food solution and NaCl, sucrose and HCl, NaCl and quinine, and HCl and quinine. 4. A tendency toward equalization of effectiveness in eliciting responses among the four basic taste stimuli was detected on the cortex. The ratios of mean evoked responses in 29 type-1 neurons in comparison with spontaneous rate (4.4 spikes/s) were 1.7, 1.9, 1.8, and 1.9 for sucrose, NaCl, HCl, and quinine, respectively. 5. The breadth of responsiveness to the four basic taste stimuli was quantified by means of the entropy measure introduced by Smith and Travers (33). The mean entropy value was 0.540 for 29 type-1 neurons, which was similar to 0.588 previously reported for rat chorda tympani fibers, suggesting that breadth of tuning is not more narrowly tuned in a higher level of the gustatory system in the rat. 6. Convergent inputs of other sensory modalities were detected exclusively in type-1 neurons. Thirteen (45%) of 29 type-1 neurons also responded to cold and/or warm water, but none of 6 type-2 neurons responded to thermal stimuli. Two (7%) of 29 type-1 neurons responded to almond and acetic acid odors, but the 6 type-2 neurons did not. Two (13%) of 16 type-1 neurons responded to interperitoneal injection of LiCl, which is known to induce gastrointestinal disorders, with a latency of approximately 5 min, but 4 type-2 neurons tested were not responsive to this stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.