Abstract

Recordings were made from olfactory receptor neurons of Xenopus laevis tadpoles using the patch-clamp technique to investigate the responses of these cells to odorants. Four amino acids (glutamate, methionine, arginine and alanine) both individually and as a mixture were used as stimuli. Of the 156 olfactory neurons tested, 43 showed a response to at least one of the stimuli. Of the cells tested, 19 % responded to glutamate, 16 % to methionine, 12 % to arginine and 10 % to alanine. Each amino acid was able to induce both excitatory and inhibitory responses, although these occurred in different cells. Each amino acid produced approximately equal numbers of inhibitory and excitatory responses. Inhibitory responses could best be observed in the perforated-patch configuration using gramicidin as an ionophore and a recording configuration that is a current-clamp for fast signals and a voltage-clamp for slow signals. The diversity of the odorant responses, in particular the existence of excitatory and inhibitory responses, is not consistent with a single transduction pathway in olfactory neurons of Xenopus laevis tadpoles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call