Abstract

The paper considers a model for counteracting seismic effects on a bridge structure created by an active damping device. The essence of the proposed approach is that the active damper plays an auxiliary role as an intermediate device that allows you to determine the necessary hysteresis characteristics of effective damping. Based on the identified optimal hysteresis characteristics, it is possible to determine the parameters of passive dampers intended for direct installation on the protected object. An active damper can be implemented as a device on a specialized test bench, or virtually in numerical experiments. For numerical modeling, a mathematical model of active damping was developed, taking into account the pulsed nature of seismic effects and thereby expanding the limitations inherent in traditional harmonic analysis. In this model, convolutional representations of dynamic quantities are proposed, equivalent to the introduction of a weak measure of dynamic functions in the space of bridge oscillations. This approach is more responsive to the challenges of engineering applications.

Highlights

  • The paper considers a model for counteracting seismic effects on a bridge structure created by an active damping device

  • The essence of the proposed approach is that the active damper plays an auxiliary role as an intermediate device that allows you to determine the necessary hysteresis characteristics of effective damping

  • Based on the identified optimal hysteresis characteristics, it is possible to determine the parameters of passive dampers intended for direct installation on the protected object

Read more

Summary

TASKS AND PRINCIPLES OF ACTIVE DAMPING OF VIBRATION FLIGHTS

Бул эмгекте көпүрөнүн конструкциясына сейсмикалык таасирге каршы таасирдин модели каралган. A mathematical model of active damping was developed, taking into account the pulsed nature of seismic effects and thereby expanding the limitations inherent in traditional harmonic analysis In this model, convolutional representations of dynamic quantities are proposed, equivalent to the introduction of a weak measure of dynamic functions in the space of bridge oscillations. Для управляемого демпфирования мост необходимо оснастить системой мониторинга, передающей в реальном времени данные о динамическом состоянии пролетной части: профиль прогиба по длине пролета, а также значения мгновенных скоростей и ускорений, распределенных по профилю пролета. Описать процесс воздействия на спектр колебаний пролетной части можно рассмотревобобщенноеактивноеустройстварегулирования (рис.1), т.е. Что конкретная техническая реализация активного демпфера не имеет значения, поскольку вне зависимости от конструкции, это устройство характеризуется только реактивной функцией (гистерезисом) и используется только на промежуточной стадии. Здесь , соответствует либо распределению внешней силы вдоль пролетной балки, либо профилю прогиба балки, p–функция свертки [8]: cos (3)

Тогда прогиб деформируемой балки
Список литературы

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.