Abstract
In this paper, the task scheduling in MapReduce is considered for geo-distributed data centers on heterogeneous networks. Adaptive heartbeats, job deadlines and data locality are concerned. Job deadlines are divided according to the maximum data volume of tasks. With the considered constraints, the task scheduling is formulated as an assignment problem in each heartbeat, in which adaptive heartbeats are calculated by the processing times of tasks, jobs are sequencing in terms of the divided deadlines and tasks are scheduled by the Hungarian algorithm. Taking into account both the data transfer and processing times, the most suitable data center for all mapped jobs are determined in the reduce phase. Experimental results show that the proposed algorithms outperform the current existing ones. The proposals with sorted task-sequences have better performance than those with random task-sequences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have