Abstract
This paper proposes static task mapping techniques for embedded many-core SoCs. The proposed techniques take into account both task and data parallelisms of the tasks in order to efficiently utilize the potential parallelism of the many-core architecture. Two approaches are proposed for static mapping: one approach is based on integer linear programming and the other is based on a greedy algorithm. In addition, a static mapping technique considering dynamic task switching is proposed. Experimental results show the effectiveness of the proposed techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.