Abstract

BackgroundTuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation.ResultsWe report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed.ConclusionThe pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.

Highlights

  • Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs

  • We focus our analysis at the systems level, based on network analyses and flux balance analyses (FBA), and further validating it based on sequence analyses and structural comparisons

  • We first carry out a network analysis, where a full genome-scale interactome encoding several types of protein-protein interactions and protein-protein influences from metabolic pathways is reconstructed

Read more

Summary

Introduction

Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Isoniazid, rifampin, pyrazinamide and ethambutol are used as front-line drugs Injectable drugs such as kanamycin, amikacin, capreomycin and viomycin are preferred for treatment. Fluoroquinolones such as ciprofloxacin, ofloxacin have been found to be indispensable in the treatment of multi-drug resistant TB. A common strategy used in the past few decades for drug discovery involves finer structural optimisations, by starting with a lead compound that has already shown some success. Very often, this amounts to finding a newer improved drug, which modifies the function of the same target as the lead compound. That only a small fraction of the proteins in the bacterial genome have been explored as drug targets

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.