Abstract
AbstractCatchweed bedstraw (Galium aparine L.) is a problematic dicot weed that occurs in major winter wheat (Triticum aestivum L.) fields in China. Tribenuron-methyl has been widely used to control broadleaf weeds since 1988 in China. However, overuse has led to the resistance evolution of G. aparine to tribenuron-methyl. In this study, 20 G. aparine populations collected from Shandong and Henan provinces were used to determine tribenuron-methyl resistance and target-site resistance mechanisms. In dose–response experiments, 12 G. aparine populations showed different resistance levels (2.92 to 842.41-fold) to tribenuron-methyl compared with the susceptible population. Five different acetolactate synthase (ALS) mutations (Pro-197-Leu, Pro-197-Ser, Pro-197-His, Asp-376-Glu, and Trp-574-Leu) were detected in different resistant populations. Individuals heterozygous for Pro-197-Ser and Trp-574-Leu mutations were also observed in a resistant population (HN6). In addition, pHB4 (Pro-197-Ser), pHB7 (Pro-197-His), pHB8 (Pro-197-Leu), pHB5 (Asp-376-Glu), and pHB3 (Trp-574-Leu) subpopulations individually homozygous for specific ALS mutations were generated to evaluate the cross-resistance to ALS-inhibiting herbicides. The pHB4, pHB7, pHB8, pHB5, and pHB3 subpopulations all were resistant to sulfonylurea, pyrazosulfuron-ethyl, triazolopyrimidine, flumetsulam, sulfonylamino-carbonyl-triazolinone, flucarbazone-sodium, pyrimidinyl thiobenzoate, pyribenzoxim, and the imidazolinone imazethapyr. These results indicated the diversity of the resistance-conferring ALS mutations in G. aparine, and all these mutations resulted in broad cross-resistance to five kinds of ALS-inhibiting herbicides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have