Abstract

Oxidative stress is a pivotal stimulating factor in neurocyte apoptosis and has been involved in the pathogenesis of Parkinson's disease (PD). In this study, we have demonstrated that the improvement in the motor disorder of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/Pro-induced mice caused by b-Ecdysterone (b-Ecd) treatment is due to its antioxidant properties. Using open field, rotarod, and pole climbing tests, we have found that b-Ecd alleviates motor disorder in MPTP/Pro-induced mice and ultimately reduces the impairment of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra (SN). Notably, these effects of b-Ecd were not observed in Nrf2-KO mice. In addition, b-Ecd significantly reduced the formation of ROS and the level of MDA, blocked the increase of LPO, and partially reversed the GSH/GSSG ratio in MPTP/Pro-induced WT mice; however, these results were also not observed in MPTP/Pro-induced Nrf2-KO mice. Mechanistically, b-Ecd enhanced the expression levels of heme oxygenase 1 (HO-1) and GCLc, but not NQO1 (NAD(P)H quinone dehydrogenase 1) and GCLm expression. Interestingly, b-Ecd failed to increase the protein and mRNA levels of HO-1 and GCLc in Nrf2-KO mice, suggesting that b-Ecd attenuates oxidative stress through an Nrf2-dependent mechanism. Furthermore, b-Ecd promoted the expressions of PI3K/Akt phosphorylation (activity) and GSK-3b phosphorylation (inactivity). Conversely, administration of b-Ecd markedly decreased Fyn phosphorylation levels. Collectively, our findings suggest that b-Ecd focuses on Nrf2 in reducing MPTP/Pro-induced oxidative stress and subsequent motor deficits by inhibiting its nuclear export through PI3K/Akt/GSK-3b/Fyn pathway regulation. These further indicate that b-Ecd may be an absorbing therapeutic agent for PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.