Abstract

Cancer-specific antigens are promising targets for the specific delivery of certain drugs or genes to cancer cells in cancer therapy. Carcinoembryonic antigen (CEA) is one of the cancer-associated antigens predominantly detected in the gastrointestinal cancer of the colon and stomach. Targeting strategies for CEA-producing cancer cells have been thoroughly developed mainly by the production of monoclonal antibodies to CEA and further single-chain variable fragment (scFv) antibodies. Here, we have generated Moloney murine leukemia virus-derived retroviral vectors co-displaying an anti-CEA scFv-envelope chimeric protein and an unmodified envelope protein to deliver a gene for herpes simplex virus thymidine kinase (HSV-tk) or Escherichia coli beta-galactosidase. The harvested viruses successfully incorporated the chimeric envelope protein as well as the unmodified envelope into the viral particles, and specifically bound to and infected human CEA-producing cancer cells via recognition of CEA, depending on the CEA-producing phenotype of the target cells. These results may have significant implications for the use of scFv directed against tumor-specific antigens for targeting specific antigen-producing cancer cells, a potential step toward in vivo cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.