Abstract
Introduction: Single chain variable fragment (scFv) antibodies are reduced forms of the whole antibodies that could be regarded as an alternative tool for diagnostic and therapeutic purposes. The optimization of processes and environmental conditions is necessary to increase the production yields and enhance the productivity. This can result in a cost-effective process and respond to the high demand for these antibodies. Methods: In this research, physical and chemical factors influencing the batch fermentation was investigated in 50 mL batch tubes using minimum media to find the optimum conditions for production of a single chain variable fragment antibody in the Escherichia coli HB2151. Experimental designs were used to screen the effective parameters and to optimize the main factors. Results: Arabinose was used instead of IPTG as a cheaper and nontoxic inducer and its optimum concentration was determined 0.1% (w/w). Induction duration time and filling volume fraction were set on the relatively better states 24 hours and 1/10 respectively. Regarding our previous study, stationary phase of the cell growth was selected as induction start time that showed higher specific scFv production yields (YP/X) in the minimum media. Finally, a statistical experimental design was extended to a central composite design (CCD) and analysis was performed based on sucrose and sorbitol concentrations producing osmotic condition for induction. The optimum region in the contour plot for the periplasmic scFv production was an osmotic circle area with total sugar molarity 0.8 to 0.9. Conclusion: Sugars such as sucrose and sorbitol producing osmotic conditions could lead to periplasmic scFv concentrations up to 2.85 mg/L of culture media improving scFv concentration near to five times of the average of the screening step (0.59 mg/L).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.