Abstract

Stathmin is the founding member of a family of microtubule-destabilizing proteins that regulate the dynamics of microtubule polymerization and depolymerization. Stathmin is expressed at high levels in a variety of human cancers and provides an attractive molecule to target in cancer therapies that disrupt the mitotic apparatus. We developed replication-deficient bicistronic adenoviral vectors that coexpress green fluorescent protein and ribozymes that target stathmin mRNA. The therapeutic potential of these recombinant adenoviruses was tested in an experimental androgen-independent LNCaP prostate cancer model. Adenovirus-mediated transfer of anti-stathmin ribozymes resulted in efficient transduction and marked inhibition of stathmin expression in these cells. Cells that were transduced with the anti-stathmin adenoviruses showed a dramatic dose-dependent growth inhibition. This was associated with accumulation of LNCaP cells in the G2-M phases of the cell cycle. A similar dose-dependent inhibition of clonogenic potential was also observed in cells infected with anti-stathmin adenoviruses. Morphologic and biochemical analysis of infected cells showed a marked increase in apoptosis characterized by detachment of the cells, increased chromatin condensation, activation of caspase-3, and fragmentation of internucleosomal DNA. If these findings are confirmed in vivo, it may provide an effective approach for the treatment of prostate cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call