Abstract

Therapeutic resistance remains an unresolved problem in the clinical management of human prostate cancer (PC). Despite initial positive response to androgen ablation therapy (AAT), virtually all PC patients will relapse due to acquisition of hormone refractory disease and selective outgrowth of tumor cells with multidrug resistance phenotype. We here provide the first experimental evidence that restoring a functional androgen receptor (AR) in the androgen-independent prostate cancer PC3 cells enhances their sensitivity to growth arrest and suppresses their colony-forming ability in response to paclitaxel and γ-irradiation. Furthermore, functional AR increases the susceptibility of these cells to the apoptotic potentials of therapeutic agents, as evidenced by an increase in caspase activity, annexin V binding, and internucleosomal DNA fragmentation, by inducing caspase activation. The abrogation of the cytotoxic effects by 4-hydroxyflutamide suggests a crucial role for AR activation in enhancing the therapeutic sensitivity of these cells in a ligand-independent fashion. Our data thus demonstrate that a functional AR is a prerequisite for effective therapeutic response and that aberrant expression or blockade by AAT may trigger pathways leading to emergence of PC cells with therapeutic resistance phenotype. Since the mainstay of primary therapy for PC has been AAT by pharmaco-therapeutic or surgical means, this study thus provides a new frontier for revising the AAT therapeutic strategy in conjunction with radiation and/or chemotherapeutic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call