Abstract

Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5–10% cases. Therefore, it is crucial to develop new antivirals against HCV. In this endeavor, we developed the “Anti-HCV” platform using machine learning and quantitative structure–activity relationship (QSAR) approaches to predict repurposed drugs targeting HCV non-structural (NS) proteins. We retrieved experimentally validated small molecules from the ChEMBL database with bioactivity (IC50/EC50) against HCV NS3 (454), NS3/4A (495), NS5A (494) and NS5B (1671) proteins. These unique compounds were divided into training/testing and independent validation datasets. Relevant molecular descriptors and fingerprints were selected using a recursive feature elimination algorithm. Different machine learning techniques viz. support vector machine, k-nearest neighbour, artificial neural network, and random forest were used to develop the predictive models. We achieved Pearson’s correlation coefficients from 0.80 to 0.92 during 10-fold cross validation and similar performance on independent datasets using the best developed models. The robustness and reliability of developed predictive models were also supported by applicability domain, chemical diversity and decoy datasets analyses. The “Anti-HCV” predictive models were used to identify potential repurposing drugs. Representative candidates were further validated by molecular docking which displayed high binding affinities. Hence, this study identified promising repurposed drugs viz. naftifine, butalbital (NS3), vinorelbine, epicriptine (NS3/4A), pipecuronium, trimethaphan (NS5A), olodaterol and vemurafenib (NS5B) etc. targeting HCV NS proteins. These potential repurposed drugs may prove useful in antiviral drug development against HCV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.