Abstract

Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call