Abstract

Cellular senescence has gained much attention as a contributor to aging and susceptibility to disease. Senescent cells undergo a stable cell cycle arrest and produce pro-inflammatory cytokines. However, an additional feature of the senescence phenotype is an altered metabolic state. Despite maintaining a non-dividing state, senescent cells display a high metabolic rate. Metabolic changes characteristic of replicative senescence include altered mitochondrial function and perturbations in growth signaling pathways, such as the mTORC1-signaling pathway. Recent evidence has raised the possibility that these metabolic changes may be essential for the induction and maintenance of the senescent state. Interventions such as rapamycin treatment and methionine restriction impact key aspects of metabolism and delay cellular senescence to extend cellular lifespan. Here, we review the metabolic changes and potential metabolic regulators of the senescence program. In addition, we will discuss how lifespan-extending regimens prevent metabolic stress that accompanies and potentially regulates the senescence program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.