Abstract
Abstract Immunosuppressive regulatory T cells (Tregs) are critical for maintaining immune homeostasis, but their presence in tumor tissues impairs anti-tumor immunity and portends poor prognoses in cancer patients. Targeting Tregs may be a powerful means to unleash more potent immune responses against cancer, but targeting these cells is challenging because their generalized inactivation may incite severe autoimmune toxicities. To selectively target Tregs in tumors, we investigated the role of the H3K27 methyltransferase EZH2 in Tregs and determined that its enhanced activity at tumor sites in mice and humans leads to more robust and stable Tregs. We demonstrate that blocking EZH2 activity, both pharmacologically and genetically, selectively reprograms the function of tumor-infiltrating Tregs without systemically altering Treg function. Genetic disruption of EZH2 in tumor-resident Tregs led to their acquisition of pro-inflammatory functions that remodeled the tumor microenvironment and enhanced the recruitment and function of effector T cells, leading to the complete elimination of tumors. Moreover, abolishing EZH2 function in Tregs was mechanistically distinct from, more potent than, and less toxic than a generalized Treg depletion approach. This study reveals a novel strategy to target Tregs in cancer that mitigates autoimmunity by reprogramming their function in tumors to enhance anti-cancer immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.