Abstract

DNA alkylation and crosslinking remains a common and effective strategy for anticancer chemotherapy despite its infamous lack of specificity. Coupling a reactive group to a sequence-directing component has the potential to enhance target selectivity but may suffer from premature degradation or the need for an external signal for activation. Alternatively, quinone methide conjugates may be employed if they form covalent but reversible adducts with their sequence directing component. The resulting self-adducts transfer their quinone methide to a chosen target without an external signal and avoid off-target reactions by alternative intramolecular self-trapping. Efficient transfer is shown to depend on the nature of the quinone methide and the sequence-directing ligand in applications involving alkylation of duplex DNA through a triplex recognition motif. Success required an electron-rich derivative that enhanced the stability of the transient quinone methide intermediate and a polypyrimidine strand of DNA to associate with its cognate polypurine/polypyrimidine target. Related quinone methide conjugates with peptide nucleic acids were capable of quinone methide transfer from their initial precursor but not from their corresponding self-adduct. The active peptide nucleic acid derivatives were highly selective for their complementary target.

Highlights

  • Covalent chemistry is not often considered in the design of pharmaceutical compounds despite its success in anti-cancer treatments and periodic resurgence in drug development.[1]

  • Certain Quinone methides (QMs) may react reversibly with nucleophiles to avoid irreversible consumption and unintended alkylation. Such reversibility has allowed for exchange and migration of DNA crosslinking in processes that are driven by the thermodynamics of the products rather than the initial kinetics of reaction.[12,13]

  • Polynucleotide kinase (PNK) was obtained from New England Biolabs (Ipswich, MA, USA). γ-[32P]-ATP was purchased from Perkin-Elmer (Waltham, MA, USA)

Read more

Summary

Introduction

Covalent chemistry is not often considered in the design of pharmaceutical compounds despite its success in anti-cancer treatments and periodic resurgence in drug development.[1]. Alkylation of duplex DNA with a triplex-forming conjugate alternatively containing a quinone methide precursor (QMP1) and a QM self-adduct

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.