Abstract
We report here on the hybridization of peptide nucleic acid (PNA)-based molecular beacons (MB) directly to duplex DNA sites locally exposed by PNA openers. Two stemless PNA beacons were tested, both featuring the same recognition sequence and fluorophore-quencher pair (Fluorescein and DABCYL, respectively) but differing in arrangement of these groups and net electrostatic charge. It was found that one PNA beacon rapidly hybridized, with the aid of openers, to its complementary target within duplex DNA at ambient conditions via formation of a PD-like loop. In contrast, the other PNA beacon bound more slowly to preopened duplex DNA target and only at elevated temperatures, although it readily hybridized to single-stranded (ss) DNA target. Besides a higher selectivity of hybridization provided by site-specific PNA openers, we expect this approach to be very useful in those MB applications when denaturation of the duplex DNA analytes is unfavorable or undesirable. Furthermore, we show that PNA beacons are advantageous over DNA beacons for analyzing unpurified/nondeproteinized DNA samples. This feature of PNA beacons and our innovative hybridization strategy may find applications in emerging fluorescent DNA diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.