Abstract
In this report, we systematically examined the role of telomerase activity in lung and ovarian cancer stem cell (CSC) propagation. For this purpose, we indirectly gauged telomerase activity, by linking the hTERT-promoter to eGFP. Using lung (A549) and ovarian (SKOV3) cancer cells, transduced with the hTERT-GFP reporter, we then employed GFP-expression levels to fractionate these cell lines into GFP-high and GFP-low populations. We functionally compared the phenotype of these GFP-high and GFP-low populations. More specifically, we now show that the cancer cells with higher telomerase activity (GFP-high) are more energetically activated, with increased mitochondrial mass and function, as well as increased glycolytic activity. This was further validated and confirmed by unbiased proteomics analysis. Cells with high telomerase activity also showed an increased capacity for stem cell activity (as measured using the 3D-spheroid assay) and cell migration (as measured using a Boyden chamber approach). These enhanced biological phenotypes were effectively inhibited by classical modulators of energy metabolism, which target either i) mitochondrial metabolism (i.e., oligomycin) or ii) glycolysis (i.e., 2-deoxy-glucose), or iii) by using the FDA-approved antibiotic doxycycline, which inhibits mitochondrial biogenesis. Finally, the level of telomerase activity also determined the ability of hTERT-high cells to proliferate, as assessed by measuring DNA synthesis via EdU incorporation. Consistent with these observations, treatment with an FDA-approved CDK4/6 inhibitor (PD-0332991/palbociclib) specifically blocked the propagation of both lung and ovarian CSCs. Virtually identical results were obtained with breast CSCs, which were also highly sensitive to palbociclib at concentrations in the nanomolar range. In summary, CSCs with high telomerase activity are among the most energetically activated, migratory and proliferative cell sub-populations. These observations may provide a mechanistic explanation for tumor metabolic heterogeneity, based on telomerase activity. FDA-approved drugs, such as doxycycline and palbociclib, were both effective at curtailing CSC propagation. Thus, these FDA-approved drugs could be used to target telomerase-high proliferative CSCs, in multiple cancer types. Finally, our experiments also allowed us to distinguish two different cellular populations of hTERT-high cells, one that was proliferative (i.e., replicative immortality) and the other that was non-proliferative (i.e., quiescent). We speculate that the non-proliferative population of hTERT-high cells that we identified could be mechanistically involved in tumor dormancy.
Highlights
Telomerase is a critical enzyme that serves an important functional role in a plethora of biological processes, ranging from organismal development and regeneration to chronological aging [1] and the onset of the malignant phenotype in human cancers [2,3,4]
A549 and SKOV3 cancer cell lines were stably-transduced with a sensitive eGFP reporter system for the fluorescent detection of high telomerase transcriptional activity
Identical results were obtained with both A549 and SKOV3 cell lines, indicating that this is a conserved property of hTERT-high cancer stem-like cells (CSCs)
Summary
Telomerase is a critical enzyme that serves an important functional role in a plethora of biological processes, ranging from organismal development and regeneration to chronological aging [1] and the onset of the malignant phenotype in human cancers [2,3,4]. Yu et al, 2013 [10], placed a 1.5-kB fragment of the hTERT promoter upstream of eGFP Recombinant transduction of this hTERTeGFP reporter into osteosarcoma cell lines allowed the purification of a telomerase enriched cell population by flow cytometry. They directly showed that hTERT-high cells derived from an osteosarcoma cell line were more stem-like and underwent anchorage-independent growth. The hTERT-high osteosarcoma cell population was more invasive, with a greater capacity for drug-resistance and metastatic dissemination This innovative approach to CSC enrichment has already shown great promise [11], but needs to be further validated and extended to the characterization of various epithelial cancer types, such as non-small cell lung cancer and ovarian carcinomas, among others
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have