Abstract

We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

Highlights

  • By convention, most pathologists review histology cut perpendicular to the tissue surface or in the vertical cross-section (XZ-plane) in order to visualize the normal tissue maturation pattern

  • Imaging in this orientation is standard for traditional ultrasound (B-scan), optical coherence tomography (OCT) and optical coherence microscopy (OCM) [6,7]

  • The Z-axis actuator moves the focal volume over a range of ~400 μm below the tissue surface, which is sufficient for imaging colonic epithelium in the mouse (

Read more

Summary

Introduction

Most pathologists review histology cut perpendicular to the tissue surface or in the vertical cross-section (XZ-plane) in order to visualize the normal (or abnormal) tissue maturation pattern. The vertical cross-section provides a comprehensive view of the epithelium in the digestive tract which normally differentiates in the basilar to luminal direction. This orientation can accurately register the location of important biological behavior relative to the tissue surface. The vertical cross-section presents histology-like images for diagnosis and quantitative studies of early cancer development. Imaging in this orientation is standard for traditional ultrasound (B-scan), optical coherence tomography (OCT) and optical coherence microscopy (OCM) [6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call