Abstract

Targeted treatment of different types of cancers through highly expressed cancer cell surface receptors by fusion proteins is an efficient method for cancer therapy. The HER2 receptor is a member of the tyrosine kinase receptors family, which plays a notable role in breast cancer tumor development. About 25-30% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2). In this study, we evaluated the particulars of a designed recombinant protein formed by HER2-specific Mab Herceptin linked with Arazyme on a HER2-overexpressing breast cancer cell line (SKBR3). Arazyme, a metalloprotease produced by Serratia proteamaculans was fused to the variable area of light and heavy chains of the Herceptin. The cytotoxic assay of the Arazyme-linker-Herceptin in the SKBR3 and MDA-MB-468 cells was evaluated by the MTT and flow cytometry techniques. The Caspase‑3 activity determination and adhesion assay were performed to evaluate the antitumor activity of the Arazyme-linker-Herceptin against SKBR3 cells. Furthermore, RT-PCR was used to measure the expression levels of the Bcl-2, Bax, MMP2, MMP9, and RIP3 genes. The Arazyme-linker-Herceptin showed higher cytotoxicity in SKBR3 cells compared to MDA-MB-468 cells. In addition, flow cytometry results revealed that the Arazyme-linker-Herceptin can significantly induce apoptosis in the HER2-overexpressing breast cancer cell line (SKBR3), which was confirmed by Bax upregulation and the decrease in adhesion of tumor cells and MMP2/MMP9. The findings of this study demonstrated that the Arazyme-linker-Herceptin induced apoptosis and decreased metastatic genes in SKBR3 cells; however, further research is required to confirm the effectiveness of the fusion protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.