Abstract

RNA interference (RNAi) has become acknowledged as an effective and useful tool to study gene function in diverse groups of cells. We aimed to suppress the expression of the E-cadherin gene during in vitro development of bovine preimplantation embryos using RNAi approach. In this experiment the effect of microinjection of E-cadherin and Oct-4 (as control) double-stranded (ds) RNA on the mRNA and protein expression level of the target E-cadherin gene was investigated. For this, a 496 bp long bovine E-cadherin and 341 bp long Oct-4 dsRNA sample were prepared using in vitro transcription. In vitro produced bovine zygotes were categorized into four treatment groups including those injected with E-cadherin dsRNA, Oct-4 dsRNA, RNase-free water, and uninjected controls. While the injection of E-cadherin dsRNA resulted in the reduction of E-cadherin mRNA and protein levels at the morula and blastocyst stage, the transcript and protein product remained unaffected in the Oct-4 dsRNA, water injected and uninjected control groups. The relative abundance of E-cadherin mRNA in the E-cadherin dsRNA injected morula stage embryos was reduced by 80% compared to the control group (P < 0.05). The Western blot analysis also showed a significant decrease in the E-cadherin protein (119 kDa) in E-cadherin dsRNA injected embryos compared to the other three groups. Microinjection of E-cadherin dsRNA has resulted only 22% blastocyst rate compared to 38%-40% in water injected and uninjected controls. In conclusion, our results indicated the suppression of E-cadherin mRNA and protein has resulted in lower blastocyst rate and the RNAi technology is a promising approach to study the function of genes in early bovine embryogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call