Abstract

Despite enormous advances in the identification and sequencing of developmentally relevant bovine genes, the function of the majority of these transcripts is not yet known. Here we aimed to apply the RNA interference (RNAi) approach to suppress the expression of the maternal transcript c-mos (AY630920) and embryonic transcripts E-cadherin (AY508164) and Oct-4 (AY490804) during in vitro development of bovine embryos using microinjection of sequence-specific double-stranded RNA (dsRNA). For this 435-, 341- and 341-bp-long dsRNA specific to the coding sequences of c-mos, E-cadherin and Oct-4 transcripts, respectively, were synthesized using Promega RiboMax" T7 system (Promega, Madison, WI, USA), where sense and antisense strands were transcribed from the target DNA template. Slaughterhouse ovaries were used to aspirate bovine oocytes, which were matured in TCM-199 with 12% estrus cow serum (ECS), fertilized in Fert-TALP, and cultured in CR1 medium at 39�C under humidified atmosphere of 5% CO2 in air. In Experiment 1, immature oocytes were categorized into three groups, each containing 50-60 oocytes: those injected with c-mos dsRNA, those injected with RNase-free water, and uninjected controls. In Experiment 2, zygotes were categorized into four groups, each containing 50-60 zygotes: those injected with E-cadherin dsRNA, those injected with Oct-4 dsRNA, those injected with RNase-free water, and uninjected controls. Each experiment was repeated four times. The effect of dsRNA on in vitro development of oocytes or embryos was assessed after microinjection during culture. The level of mRNA and protein expression was investigated using real-time PCR and western blot analysis, respectively. Data were analyzed using SAS, version 8 (SAS Institute Inc., Cary, NC, USA). Microinjection of c-mos dsRNA resulted in a 70% reduction of c-mos transcript abundance after maturation compared to the water-injected and uninjected controls (P < 0.05). Similarly, microinjection of E-cadherin and Oct-4 dsRNA at the zygote stage resulted in 80% and 60% reduction in transcript abundance at the blastocyst stage, respectively, compared to the uninjected controls (P < 0.05). Decreases in the c-mos (39 kDa) and E-cadherin proteins (119 kDa) were observed in the c-mos and E-cadherin dsRNA-injected groups, respectively, compared to the control. A higher proportion of oocytes (75%) showed first polar body extrusion after maturation in c-mos dsRNA-injected groups, compared to 52% in water-injected and 57% in uninjected controls. Only 22% from E-cadherin dsRNA- and 24% from Oct-4 dsRNA-injected zygotes developed to the blastocyst stage compared to 39 and 37% blastocyst rates in water-injected and uninjected control groups, respectively. In conclusion, injection of sequence-specific dsRNA in bovine oocytes and embryos resulted in suppression of mRNA and their protein products, thereby affecting in vitro development of bovine embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.