Abstract

Chronic over-nutrition promotes adipocyte hypertrophy that creates inflammatory milieu leading to macrophage infiltration and their phenotypic switching during obesity. The SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1) has been identified as an important player in inflammatory diseases involving macrophages. However, the role of SHP-1 in modulating the macrophage phenotype has not been elucidated yet. In the present work, we show that adipose tissue macrophage (ATM)-specific deletion of SHP-1 using glucan particle-loaded siRNA improves the metabolic phenotype in dietary obese insulin-resistant mice. The molecular mechanism involves AT remodeling via reducing crown-like structure formation and balancing the pro-inflammatory (M1) and anti-inflammatory macrophage (M2) population. Therefore, targeting ATM-specific SHP-1 using glucan-particle-loaded SHP-1 antagonists could be of immense therapeutic use for the treatment of obesity-associated insulin resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call