Abstract

Nanomedicines based on biodegradable micelles and nanoparticles offer a most promising treatment for malignant tumors. The therapeutic outcomes of current nanomedicines are, however, trimmed by their instability, low tumor retention, inefficient tumor cell uptake, and inferior drug release control. We report herein that cRGD-functionalized, rapidly glutathione-responsive, and reversibly core-crosslinked biodegradable micellar doxorubicin based on PEG-PCL block copolymer mediates potent and targeted glioma chemotherapy, affording significantly better treatment efficacy and lower systemic toxicity than the non-crosslinked micellar doxorubicin and clinically used pegylated liposomal doxorubicin controls. These reversibly core-crosslinked multifunctional biodegradable micelles have emerged as a robust, simple, versatile, and safe nanoplatform that might elegantly bridge the gap between the scientific and translational anticancer nanomedicine research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call