Abstract

Near-infrared-II (NIR-II) photothermal therapy is emerging as a cutting-edge modality for tumor ablation due to its good biosafety, high penetration ability and spatiotemporal controllability. Despite efforts, establishing a link between cellular metabolic regulation and photothermal performance is still promising in synergistic cancer therapy. Herein, we developed a core-shell semiconducting polymer@metal-phenolic network (SP@GFP) nanomotor by assembling diphenol-terminated cisplatin prodrug ligand (cPt-DA) and iron (III) (Fe3+) through metal coordination on SP particles in the presence of GOx and DSPE-PEG-cRGD, for NIR-II-propelled self-propulsion and synergistic cancer therapy. Remotely driving the SP@GFP nanomotor with an NIR-II laser through a thermophoresis mechanism would allow for in-depth penetration and accumulation. The synergistic photothermal effect and continuous Fe2+-mediated ROS generation of SP@GFP nanomotor could activate photothermal, chemotherapeutic effects and ferroptosis pathway for cancer cells through reshaping cellular metabolic pathways (HSP and GPX4). By combining the concepts of chemotherapeutic prodrugs, catalytic ROS generation, photothermal response and cellular metabolic regulation, the NIR-II laser-controlled core-shell SP@GFP nanomotor displayed improved outcomes for enhanced cancer therapy through synergistic oxidative stress-photothermo modulation. Statement of significance•A NIR-II-powered core-shell SP@GFP prodrug nanomotor was constructed through metal coordination assembly for enhanced cancer therapy;•NIR-II laser propelled the propulsion of SP@GFP nanomotor through thermophoresis mechanism for in depth penetration and accumulation.•Therapeutic outcomes were improved through synergistic modulating oxidative stress and photothermal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.