Abstract
The aim of this study was to establish a novel adenovirus-based gene therapy system targeting astrocytoma. For this purpose, the Cre recombinase (Cre)/loxP system together with the astrocytoma-specific promoter for GFAP were used. We constructed an adenovirus (Ad) vector that expressed Cre under the control of the GFAP promoter (AxGFAPNCre), as well as another Ad vector containing a switching unit. The latter vector contained a stuffer sequence encoding GFP (AxCALGLTK) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-TK) gene under the control of the CAG promoter. In this system, gene expression of either the stuffer sequence (GFP) or the downstream gene (HSV-TK) was switched on by co-expression of Cre recombinase. Western blot analysis demonstrated specific expression of high levels of TK protein in C6 glioma cells after co-infection of AxGFAPNCre and AxCALGLTK. In vivo, AxGFAPNCre/AxCALGLTK injection into C6 gliomas in the subcutaneous tissue of nude mice followed by intraperitoneal ganciclovir (GCV) treatment significantly suppressed tumor growth compared with control mice. Co-infection of AxGFAPNCre and AxCALNLLacZ resulted in LacZ expression in C6 glioma cells and some reactive astrocytes, whereas GFP was expressed in other cell types surrounding the injected site. Furthermore, a combination of AxGFAPNCre/AxCALGLTK and intraperitoneal GCV injection significantly regressed intracranial C6 gliomas in the rat striatum and prolonged the survival time compared with control rats. The present results indicate that this cell-type-specific gene therapy using a Cre/loxP adenovirus system is both operational and effective, at least against astrocytoma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have