Abstract

The 29 amino acid neuropeptide galanin is widely distributed in the nervous and endocrine systems; highest levels of galanin synthesis and storage occur within the hypothalamus in the median eminence, but it is also abundantly expressed in the basal forebrain, the peripheral nervous system, and gut. To further define the role played by galanin in the peripheral nervous and endocrine systems, a mouse strain carrying a loss-of-function germ-line mutation of the galanin locus, engineered by targeted mutagenesis in embryonic stem cells, has been generated. The mutation removes the first five exons containing the entire coding region for the galanin peptide. Germ-line transmission of the disrupted galanin locus has been obtained, and the mutation has been bred to homozygosity on the inbred 129O1aHsd background. Phenotypic analysis of mice lacking a functional galanin gene demonstrate that these animals are viable, grow normally, and can reproduce. A marked reduction in both the anterior pituitary prolactin content and in circulating plasma levels of the hormone is evident. Lactation is abolished along with abrogation of the proliferative response of the lactotroph to estrogen. The responses of sensory neurons to injury in the mutants are markedly impaired. Peripheral nerve regeneration is reduced with associated long-term functional deficits. There is a striking reduction in the development of chronic neuropathic pain. These two phenotypic changes may be explained, in part, by the observation that a subset of dorsal root ganglion neurons is lost in the mutant animals, implying a role for galanin as a trophic cell survival factor. These initial findings have important implications for our understanding and potential therapeutic treatment of (a) sensory nerve regeneration and neuropathic pain and (b) disordered pituitary proliferation and the development of prolactinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.