Abstract
Rebuilding of infarcted myocardium by mesenchymal stem cells (MSCs) has not been successful because of poor cell survival due in part to insufficient blood supply after myocardial infarction (MI). We hypothesize that targeted delivery of vascular endothelial growth factor (VEGF) to MI can help regenerate vasculature in support of MSC therapy in a rat model of MI. VEGF-encapsulated immunoliposomes targeting overexpressed P-selectin in MI tissue were infused by tail vein immediately after MI. One week later, MSCs were injected intramyocardially. The cardiac function loss was moderated slightly by targeted delivery of VEGF or MSC treatment. Targeted VEGF+MSC combination treatment showed highest attenuation in cardiac function loss. The combination treatment also increased blood vessel density (80%) and decreased collagen content in post-MI tissue (33%). Engraftment of MSCs in the combination treatment group was significantly increased and the engrafted cells contributed to the restoration of blood vessels. From the Clinical EditorVEGF immunoliposomes targeting myocardial infarction tissue resulted in significantly higher attenuation of cardiac function loss when used in combination with mesenchymal stem cells. MSCs were previously found to have poor ability to restore cardiac tissue, likely as a result of poor blood supply in the affected areas. This new method counterbalances that weakness by the known effects of VEGF, as demonstrated in a rat model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.