Abstract

Polycyclic aromatic hydrocarbons (PAHs) in aquatic environments are threatening ecosystems and human health. In this work, an effective and environmentally friendly catalyst based on biochar and molecular imprinting technology (MIT) was developed for the targeted degradation of PAHs by activating peroxymonosulfate. The results show that the adsorption amount of naphthalene (NAP) by molecularly imprinted biochar (MIP@BC) can reach 82% of the equilibrium adsorption capacity within 5 min, and it had well targeted adsorption for NAP in the solution mixture of NAP, QL and SMX. According to the comparison between the removal rates of NAP and QL by MIP@BC/PMS or BC/PMS system in respective pure solutions or mixed solutions, the MIP@BC/PMS system can better resist the interference of competing pollutants (i.e., QL) compared to the BC/PMS system; that is, MIP@BC had a good ability to selectively degrade NAP. Besides, the removal rate of NAP by MIP@BC/PMS gradually decreased as pH increased. The addition of Cl− greatly promoted the targeted removal of NAP in the MIP@BC/PMS system, while HCO3− and CO32− both had an inhibitory effect. Furthermore, SO4•-, O2•- and 1O2 produced by BC activating PMS dominated the NAP degradation, and it was inferred that the vacated imprinted cavities after NAP degradation can continue to selectively adsorb NAP and this could facilitate the reusability of the material. This study can promote the research on the targeted degradation of PAHs through the synergism of biochar/PMS advanced oxidation processes and MIT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call