Abstract
Huntington's disease (HD) is a devastating, progressive neurodegenerative disease with a distinct phenotype characterized by chorea and dystonia, incoordination, cognitive decline and behavioral difficulties. The precise mechanisms of HD progression are poorly understood; however, it is known that there is an expansion of the trinucleotide cytosine-adenine-guanine (CAG) repeat in the Huntingtin gene. Herein DI/LC-MS/MS was used to accurately identify and quantify 185 metabolites in post mortem frontal lobe and striatum from HD patients and healthy control cases. The findings link changes in energy metabolism and phospholipid metabolism to HD pathology and also demonstrate significant reductions in neurotransmitters. Further investigation into the oxidation of fatty acids and phospholipid metabolism in pre-clinical models of HD are clearly warranted for the identification of potential therapies. Additionally, panels of 5 metabolite biomarkers were identified in both the frontal lobe (AUC = 0.962 (95% CI: 0.85–1.00) and striatum (AUC = 0.988 (95% CI: 0.899–1.00). This could have clinical utility in more accessible biomatrices such as blood serum for the early detection of those entering the prodromal phase of the disease, when treatment is believed to be most effective. Further evaluation of these biomarker panels in human cohorts is justified to determine their clinical efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.