Abstract

The failure of substation equipment can cause incalculable losses to the economy and power consumption of the whole country. The use of infrared images is a powerful tool to obtain equipment temperature, which can then be used directly to diagnose substation equipment without stopping the operation of the equipment. In this paper, the authors focus on the correct identification of different types of electrical equipment from the infrared images. An improved faster regions with convolutional neural network features (faster R-CNN) algorithm is proposed, which shows very high detection accuracy for substation equipment. Firstly, the backbone of the faster R-CNN is optimised. A new network, the ResNet-30 network, is designed to reduce the redundancy of the ResNet-34 network and increases the proportion of residual blocks in the network in the previous stages. Next, the deep receptive field is combined with the shallow receptive field of the network and a double-shortcut structure with a large convolutional kernel is proposed. This enhances the ability of network feature extraction. A cross-channel shortcut is proposed at the channel transition of the network based on the channel number relationship between the dual-shortcut structures. Finally, the proposed method is compared with faster R-CNNs whose backbones are ResNet-50 plus a feature pyramid network (ResNet-50+FPN), you only look once v3 plus spatial pyramid pooling (YOLOv3+SPP) and a single-shot multibox detector (SSD). The results show that the improved model not only has a smaller number of parameters and low requirements for graphics processing unit (GPU) equipment, but also has the highest mean average precision (mAP) for mostly substation equipment in the test-set. This lays a foundation for fault diagnosis of substation equipment in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.