Abstract

We report a vortex-like magnetic configuration in uniaxial ferromagnet Fe3Sn2 nanodisks using differential phase contrast scanning transmission electron microscopy. This magnetic configuration is transferred from a conventional magnetic vortex using a zero-magnetic-field warming process and is characterized by a series of concentric cylinder domains. We termed them as "target bubbles" that are identified as three-dimensional depth-modulated magnetic objects in combination with numerical simulations. Target bubbles have room-temperature stability even at zero magnetic field and multiple stable magnetic configurations. These advantages render the target bubble an ideal bit to be an information carrier and can advance magnetic target bubbles toward functionalities in the long term by incorporating emergent degrees of freedom and purely electrically controllable magnetism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.