Abstract

Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (KD) and the target dissociation rate constant on target and tissue selectivity. The KD values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ8-tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the KD and koff for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal KD value is often not the lowest KD value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

Highlights

  • In the development of new therapeutics, the balance between safety and efficacy is critical for success

  • Given that optimization is often performed towards lower koff values, the target at which koff is 0.01 h−1 is considered as the desired therapeutic target

  • As it would be unlikely in drug development to develop two drugs with a 1000-fold different binding kinetics but the same KD value, we performed these simulations with 100-fold different binding kinetics and 10-fold different KD values as presented in Supplemental 5

Read more

Summary

Objectives

To facilitate the optimization of the KD, we aimed to predict the KD value from the molecular structure with predictive QSAR modeling

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call