Abstract

Objective: Next-generation sequencing technologies can generate an analysis of a large number of candidate genes, all the coding regions of a genome, or whole genomes with a high degree of accuracy and within a short amount of time. Targeted next generation sequencing systems have been found in many routine genetic diagnosis applications that allow the sequencing of only the candidate regions of the genome. Materials and Methods: In this study, we designed PCR-based targeted next generation sequencing (NGS) panels for severe combined immunodeficiency (SCID) and primary antibody deficiency (PAD) and created an algorithm for analysing high-throughput data. Results: We screened 112 patients (48 SCID and 64 PAD) and we detected genetic variations in 58% of the SCID and in 14.2% of the PAD patients. All variants were validated by Sanger sequencing to validate the accuracy of the NGS panel and analysis algorithm. Conclusion: Designing targeted next generation sequencing panels with an appropriate method, in accordance with the targeted region, and analysing the raw data with a suitable workflow, increases the success of the panel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call