Abstract
AbstractHydrogels, especially the ones with self‐recovery and adhesive performances, have attracted more and more attention owing to their wide practical potential in the biomedical field involving cell delivery, wound filling, and tissue engineering. Tannic acid (TA), a nature‐derived gallol‐rich polyphenol, exhibits not only unique chelating properties with transition metal cations but also desirable anti‐oxidation properties and strong bonding capability to proteins and gelatin. Thus, taking advantage of the versatility of TA, a one‐pot method is proposed herein to produce TA‐modified gelatin hydrogels with the aid of NaIO4 under basic conditions. By changing the amount of NaIO4 used, the obtained hydrogels are covalently cross‐linked to different degrees and consequently exhibit diversity in their self‐healing and adhesive properties. The gelling time, viscoelasticity, and morphology of hydrogels are investigated, and when the feed molar ratio of NaIO4 to TA is adjusted to 15:1, the fabricated hydrogel shows optimum self‐healing efficiency of 73% and adhesive strength of 36 kPa. Additionally, considering the completely natural origin of TA and gelatin, this study offers an original way for the fabrication of biocompatible self‐healing and adhesive materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have