Abstract
Analysis of byproducts from thermal degradation of polymer materials provides a wealth of information about a materials’ composition, thermal stability, degradation mechanisms, and kinetics. However, regardless of the instrumentation used, only limited information is obtainable from a single experiment. Microfurnace technology, when interfaced to a gas chromatography-mass spectrometry (GC-MS), can be used to obtain both thermal and chemical information via evolved gas analysis-MS (EGA-MS) and GC-MS analysis modes. While both EGA-MS and Py-GC-MS are valuable when characterizing polymer materials, at least two experiments on distinct samples are required, which can be a liability for clear interpretation of results from inhomogeneous samples. Here, we seek to overcome this limitation by combining EGA-MS and Py-GC-MS modes in a single experimental setup. This was done by developing new gas line modifications to allow for tandem Pyrolysis Evolved Gas-Gas Chromatography-Mass Spectrometry (Py/EG-GC-MS) analysis. Verification of Py/EG-GC-MS analysis was performed using a polystyrene standard. Results demonstrate successful Py/EG-GC-MS analysis for the first-time showing the potential of these modifications for application in areas where sample is limited or direct correlation of products to the thermal profile is desirable such as in forensics or product-specific kinetics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have