Abstract
We demonstrate a tandem organic photovoltaic cell incorporating solution- and vacuum-deposited small molecules as the active layers. A blue and green-absorbing boron subphthalocyanine chloride:C70 graded heterojunction (HJ) sub-cell is combined with a green and red-absorbing functionalized squaraine/C70 bilayer HJ sub-cell, resulting in a tandem cell with a wavelength response from 350 nm to 800 nm. The efficiency of the cells depends on process conditions such as solvent annealing, resulting in nanocrystalline morphology that leads to improved charge and exciton transport compared with un-annealed cells. The incorporation of C70 in both sub-cells leads to an increase of short-circuit current by at least 30% compared to analogous cells using C60. The optimized power conversion efficiency of the tandem cell is 6.6% ± 0.1%, with an open-circuit voltage of 1.97 ± 0.1 V under simulated 1 sun, AM 1.5G illumination. The tandem cell voltage is equal to the sum of the constituent sub-cells, indicating that the transparent, Ag nanoparticle/MoO3 compound charge recombination layer interposed between the cells is nearly lossless.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.