Abstract

In eukaryotic cells many diverse cellular functions are regulated by reversible protein phosphorylation. In recent years, phosphoproteomics has become a powerful tool to study protein phosphorylation because it allows unbiased localization, and site-specific quantification, of in vivo phosphorylation of hundreds of proteins in a single experiment. A common strategy to identify phosphoproteins and their phosphorylation sites from complex biological samples is the enrichment of phosphopeptides from digested cellular lysates followed by mass spectrometry. However, despite the high sensitivity of modern mass spectrometers the large dynamic range of protein abundance and the transient nature of protein phosphorylation remained major pitfalls in MS-based phosphoproteomics. Tandem metal-oxide affinity chromatography (MOAC) represents a robust and highly selective approach for the identification and site-specific quantification of low abundant phosphoproteins that is based on the successive enrichment of phosphoproteins and -peptides. This strategy combines protein extraction under denaturing conditions, phosphoprotein enrichment using Al(OH)3-based MOAC, tryptic digestion of enriched phosphoproteins followed by TiO2-based MOAC of phosphopeptides. Thus, tandem MOAC effectively targets the phosphate moiety of phosphoproteins and phosphopeptides and, thus, allows probing of the phosphoproteome to unprecedented depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.